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ABSTRACT

Region of interest (ROI) quantitation is an important task in emission tomography (e.g., positron emission
tomography and single photon emission computed tomography). It is essential for exploring clinical factors
such as tumor activity, growth rate, and the efficacy of therapeutic interventions. Bayesian methods based on
the maximum a posteriori principle (or called penalized maximum likelihood methods) have been developed for
emission image reconstructions to deal with the low signal to noise ratio of the emission data. Similar to the
filter cut-off frequency in the filtered backprojection method, the smoothing parameter of the image prior in
Bayesian reconstruction controls the resolution and noise trade-off and hence affects ROI quantitation. In this
paper we present an approach for choosing the optimum smoothing parameter in Bayesian reconstruction for
ROI quantitation. Bayesian reconstructions are difficult to analyze because the resolution and noise properties
are nonlinear and object-dependent. Building on the recent progress on deriving the approximate expressions for
the local impulse response function and the covariance matrix, we derived simplified theoretical expressions for
the bias, the variance, and the ensemble mean squared error (EMSE) of the ROI quantitation. One problem in
evaluating ROI quantitation is that the truth is often required for calculating the bias. This is overcome by using
ensemble distribution of the activity inside the ROI and computing the average EMSE. The resulting expressions
allow fast evaluation of the image quality for different smoothing parameters. The optimum smoothing parameter
of the image prior can then be selected to minimize the EMSE.
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1. INTRODUCTION

Emission tomography using radioactive tracers (namely, single photon emission computed tomography [SPECT]
and positron emission tomography [PET]) has been widely used in clinical diagnosis and biological research. One
important application of emission tomography is to quantify the absolute tracer uptake in regions of interest
(ROIs). ROI quantitation is very important for evaluating tumor activity, growth rate, and efficacy of therapeutic
interventions.

People have studied the quantitative results of emission reconstruction. However, these studies have mostly
been focused on linear algorithms. Statistical methods have been developed for emission tomography to improve
image quality.1–4 However, because they are generally nonlinear, the analysis is more difficult. Recently, progress
has been made in understanding the nonlinear properties of statistical reconstruction methods.5–11

Barrett et al.5 derived approximate formulae for the mean and covariance of the maximum likelihood (ML)
expectation maximization (EM) reconstruction as a function of the iteration number. The same approach
was extended to maximum a posteriori (MAP) EM algorithms by Wang and Gindi8 and most recently to
block iterative algorithms by Soares et al.12 This iteration-based approach is attractive for methods that are
terminated before convergence, as is common practice for the EM algorithm and its ordered-subsets variants.13

However, evaluation of the expressions for large numbers of iterations is time-consuming. In addition, this
approach requires that the reconstruction algorithm has an explicit update equation. Hence, it is not applicable
to gradient-type algorithms that involve line searches.

An alternative approach was proposed by Fessler and Rogers,6, 7 who analyzed the mean, variance, and spatial
resolution at a fixed point of the objective function. The resolution and noise properties are computed at the fixed
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point using partial derivatives and truncated Taylor series approximations. These results are independent of the
particular optimizing algorithm used and require only that the algorithm be iterated to effective convergence. Qi
and Leahy9, 10 extended this approach by deriving simplified expressions for the local impulse response function
and covariance using Fourier transform. These expressions allow fast evaluation of the resolution and noise
properties of Bayesian reconstruction. The results have been used to choose the prior parameter to maximize the
contrast to noise ratio9 and to achieve uniform contrast recovery in fully 3D PET.10 Similar approximations have
also been used by Stayman and Fessler11 in designing penalty function to achieve isotropic local point spread
functions. Combining with computer observer models, these theoretical expressions have also been applied to
the study of lesion detectability.14

Here we applied these results to the study of ROI quantitation. For quantitation, we are interested in
bias and variance of the estimate. We will derive theoretical expressions for the bias and variance of ROI
quantitation. From them we will construct the ensemble mean squared error (EMSE). One difficulty in evaluating
ROI quantitation is that the truth is required for calculating the bias. We overcome this problem by using
ensemble knowledge of the activity distribution inside the ROI. We will derive expression for the overall EMSE
and show that the prior parameter can be selected to minimize the overall EMSE.

2. THEORY

2.1. Data Model

Emission data are well modeled as a collection of independent Poisson random variables with the expectation,
ȳ ∈ IRM×1, related to the unknown tracer distribution, x ∈ IRN×1, through an affine transform

ȳ = Px + r, (1)

where P ∈ IRM×N is the detection probability matrix with the (i, j)th element equal to the probability of
detecting an event from the jth voxel at the ith measurement, and r ∈ IRM×1 accounts for the presence of
scattered and random events in the data.

The Poisson likelihood function is

p(y|x) =
∏

i

e−ȳi ȳyi

i

yi!
, (2)

and the log likelihood function is given by

L(y|x) =
∑

i

(yi log ȳi − ȳi − log yi!) , (3)

where y ∈ IRM×1 is the measured sinogram data.

In PET the detection probability matrix P can be factored into

P = PsensPattnPsys, (4)

where Psys is a projection matrix determined by the PET scanner geometry, with each element (i, j) equal to
the probability of a photon pair produced in voxel j being detected by the detector pair i in the absence of
attenuation and assuming uniform detector sensitivity. Pattn and Psens are diagonal matrices that account for
the photon attenuation inside the object and the variation of the detector sensitivities, respectively. In SPECT
the photon attenuation also depends on the source location and hence cannot be factored out from Psys.

2.2. Bayesian Image Reconstruction

The ML estimate can be found by maximizing (3). A popular ML algorithm for PET reconstruction is the
EM algorithm.15–17 However, ML solutions are unstable (i.e., noisy) because the tomography problem is ill-
conditioned. Thus, some form of regularization (or prior function) is needed to reconstruct a reasonable image.



Bayesian methods regularize the image through the use of a prior distribution on the unknown image. Most
image priors in emission image reconstruction have a Gibbs distribution of the form

p(x) =
1
Z

e−βU(x), (5)

where U(x) is the energy function, β is the smoothing parameter that controls the resolution of the reconstructed
image, and Z is a normalization constant. Here we focus on the widely used quadratic priors, for which the
energy function can be expressed as

U(x) =
1
2

x′Rx, (6)

where R is a positive definite (or semidefinite∗) matrix. Pair-wise membrane priors18 and thin-plate priors18, 19

are special cases of (6).

Combining the likelihood function and the image prior, the MAP reconstruction is found as

x̂(y) = arg max
x≥0

[L(y|x) − βU(x)] . (7)

Since L(y|x) is a concave function of x, (7) generally has a unique solution for convex priors. The smoothing
parameter β has a strong effect on the image property. If β is too small, the reconstructed image approaches
the ML estimate and becomes very noisy; if β is too large, the reconstructed image will be very smooth and
useful structural information can be lost. In the following sections we study how to select β for the optimum
ROI quantitation. We note that when β is dependent on data, the method ceases to be true Bayesian. However,
the same MAP reconstruction algorithm can still be used to reconstruct an image once β is selected. Thus, with
a little abuse of terminology, we still refer to the result as a MAP reconstruction.

2.3. ROI Quantitation

The total tracer uptake inside an ROI is computed as

η(x̂) = f ′x̂, (8)

where f is the indicator vector of the ROI, i.e., fi is equal to one if voxel i is inside the ROI, and zero otherwise.

We are often interested in the bias and variance of the estimate,

bias(η) = f ′Ey{x̂(y)} − f ′x = f ′[h(x) − x], (9)
var(η) = f ′Σx̂f ., (10)

where h(x) = Ey(x̂) is the expectation of the reconstructed images of the unknown tracer distribution x and
Σx̂ is the covariance matrix of the reconstructed images.

In order to calculate the bias, we focus on small ROIs that are surrounded by some uniform background. Let
x0 denote a reference image where the activity inside the ROI is equal to the uniform background and h(x0)
the expectation of the corresponding reconstructed image. If the size of the uniform background in x0 is much
larger compared to the resolution of the reconstructed image, we can have the following approximation

f ′h(x0) − f ′x0 ≈ 0. (11)

Then (9) can be converted to

bias(ηROI) ≈ f ′h(x) − f ′x + f ′x0 − f ′h(x0)
= f ′[h(x) − h(x0)] − f ′[x − x0]. (12)

∗Strictly speaking, when R is semidefinite, the normalization constant Z = ∞. However, the MAP reconstruction in
(7) is still well defined.



Using the first-order Taylor series expansion on h(x), we have

h(x) = h(x0) + ∇h(x0)(x − x0). (13)

For MAP reconstruction shown in (7) with the Poisson likelihood, we can derive7

∇h(x) = [F + βR]−1F , (14)

where F = P ′diag
[

1
ȳi

]
P is the Fisher information matrix.

Substituting (13) and (14) into (12) results in

bias(η) ≈ f ′[F + βR]−1FxROI − f ′xROI, (15)

where xROI = x − x0 is the activity inside the ROI above the background.

Similarly, using the first-order Taylor series expansion on x̂(y), we can derive an approximation for the
covariance matrix6

Σx̂ ≈ [F + βR]−1F [F + βR]−1. (16)

Thus, the variance of η is
var(η) = f ′[F + βR]−1F [F + βR]−1f . (17)

Combining the bias and variance, we can obtain a single figure of merit for measuring the quality of the
quantitation, the ensemble mean squared error (EMSE),

EMSE = [bias(η)]2 + var(η)
= |f ′[F + βR]−1FxROI − f ′xROI|2 + f ′[F + βR]−1F [F + βR]−1f . (18)

2.4. ROI with Random Activity

Equation (18) is not computable in real situations since we do not know xROI (otherwise the ROI quantitation
would not be necessary). However, we often have some knowledge of the statistical distribution of the ROI
activity based on existing data. We can then study the averaged ensemble mean squared error for all possible
ROI activity

EMSE = E(η − f ′x)2 = EROI[bias(η|xROI)]2 + EROIvar(η|xROI), (19)

where EROI denotes the expectation w.r.t. the distribution of the ROI activity, and bias(η|xROI) and var(η|xROI)
denote the bias and variance of the ROI quantitation with known ROI activity as shown in (15) and (17),
respectively. Please note that x in (19) is a random vector.

To simplify the notations, let us define q ≡ F [F + βR]−1f . From (15) we have

EROI[bias(η|xROI)]2 ≈ EROI(q − f)′xROIx
′
ROI(q − f), (20)

≈ (q − f)′EROI{xROIx
′
ROI}(q − f), (21)

≈ (q − f)′ΣROI(q − f)′ + |(q − f)′x̄ROI|2, (22)

where ΣROI and x̄ROI are the covariance and the expectation of the ROI activity.

Now let us study the expectation of the variance. Since the ROI is small compared to the whole object, we
can assume that the variation of the activity in the ROI is insignificant compared to the Poisson noise in the
emission data. Thus, the covariance of the reconstructed image in (16) is independent of the ROI activity, i.e.,

EROIvar(η|xROI) = var(η|xROI) ≈ q′[F + βR]−1f . (23)

Substituting (22) and (23) into (19), we get

EMSE ≈ (q − f)′ΣROI(q − f)′ + |(q − f)′x̄ROI|2 + q′[F + βR]−1f . (24)



On the other hand, we can write

EMSE = E(η − f ′x)2 = [E(η − f ′x)]2 + var(η − f ′x). (25)

Comparing (24) and (25), we have

E(η − f ′x) ≈ (q − f)′x̄ROI, (26)
var(η − f ′x) ≈ q′[F + βR]−1f + (q − f)′ΣROI(q − f)′. (27)

The first term in (27) is the variance caused by the Poisson noise, while the second term is caused by the variation
of ROI activity.

2.5. ROI with Variable Contrast

As a special case, we study the ROI with variable contrast in this section. Here the activity distribution in the
ROI is modeled as a fixed profile times a random scaling factor (variable contrast), i.e.,

xROI = cx̄ROI, (28)

where c is the random scaling factor with mean of one and variance of σ2
c . This statistical model is very useful

in emission imaging because the tracer uptake in many ROIs can be assumed to be homogeneous. The variance
of xROI under this model is

ΣROI = σ2
c x̄ROIx̄

′
ROI. (29)

Substituting it into (24) results in

EMSE = (1 + σ2
c )|(q − f)′x̄ROI|2 + q′[F + βR]−1f . (30)

Equation (30) is equivalent to a generalized ensemble mean squared error of the ROI quantitation with known
activity by giving a weight of (1 + σ2

c ) to the bias square.

2.6. Fast Computation

Equations (24) and (30) involve the inverse of [F + βR]. Direct calculation is very time-consuming due to the
large size of the matrix. Here we derive simplified expressions using Fourier transform. The idea is based on the
observation that F and F + βR are diagonally dominant and are smoothly varying along the diagonal.6, 7 This
allows us to use the locally stationary approximation10

q ≈ F (j)[F (j) + βR(j)]−1f (31)

where F (j) and R(j) are block Toeplitz matrices whose jth columns are equal to the jth columns of F and R,
respectively (assuming voxel j is the center of the ROI).

Since a large block Toeplitz matrix can be approximately diagonalized by Fourier transform, (31) can be
computed as

q ≈ Q′QF (j)Q′Q [F (j) + βR(j)]−1
Q′Qf

≈ Q′ diag
[

λi(j)
λi(j) + βµi(j)

]
Qf , (32)

where {λi(j), i = 1, . . . , N} is the Fourier transform of F (j) and {µi(j), i = 1, . . . , N} is the Fourier transform
of R(j). Q and Q′ represent the Kronecker form of the Fourier transform and its inverse, respectively. Details
on the computation of λ(j) and µ(j) can be found in.10

Similarly, [F + βR]−1f can be computed as

[F + βR]−1f ≈ Q′ diag
[

1
λi(j) + βµi(j)

]
Qf . (33)



Using the above approximation, (30) becomes

EMSE ≈ (1 + σ2
c )
(

f ′Q′ diag
[

λi(j)
λi(j) + βµi(j)

]
Qx̄ROI − f ′x̄ROI

)2

+ f ′Q′ diag
[

λi(j)
(λi(j) + βµi(j))2

]
Qf (34)

= (1 + σ2
c )

(∑
i

λi(j)ξ∗i ζi

λi(j) + βµi(j)
− f ′x̄ROI

)2

+
∑

i

λi(j)|ξi|2
(λi(j) + βµi(j))2

, (35)

where {ξi, i = 1, . . . , N} and {ζi, i = 1, . . . , N} are the Fourier transforms of f and x̄ROI, respectively, and ∗

denotes the conjugate operation.
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Figure 1. Plots of relative EMSE of the ROI quantitation as a function of β for different ROIs. (a) ROIs (diameter =
16mm) with different mean activity: 2 (solid line), 5 (dashed line), and 10 (dotted line). (b) ROIs (mean activity = 2) of
different diameter: 16mm (solid line) and 8mm (dashed line). There is no variability of the ROI activity in both (a) and
(b). (c) ROIs (diameter = 16mm, mean activity = 5) with variable contrast: σ2

c = 0 (solid line), σ2
c = 2 (dashed line),

and σ2
c = 10 (dotted line).

Equation (35) allows fast evaluation of average EMSE. To achieve the minimum EMSE estimate of the ROI
uptake, we can evaluate (35) for different β and choose the β that gives the minimum value. Figure 1 shows the



plots of the relative EMSE (= EMSE/|f ′x̄ROI|2) as a function of the smoothing parameter β for different ROI
activity. It shows that the EMSE not only depends on the smoothing parameter β, but also depends on the size,
activity level, and variability of the ROI. As the mean activity or size increases, the relative EMSE decreases,
and so does the optimum smoothing parameter. When the variation of the ROI activity increases, the relative
EMSE increases, but the optimum smoothing parameter decreases.

These plots show that the optimum smoothing parameter highly depends on the ROI activity. The ensemble
mean and covariance of the ROI activity is essential in the selection of the optimum smoothing parameter.
However, we can also see that for ROIs with high total activity, the EMSE with very small β is close to the
minimum; while for ROIs with low total activity, the EMSE with large β is close the minimum. This can give
us some rough guidance when the statistical knowledge of the ROI activity is uncertain.

3. SIMULATION RESULTS

We conducted computer simulations to validate our theoretical approximations. We simulated an ECAT HR+
whole-body PET scanner (CTI PET Systems, Knoxville, TN) operating in two dimension mode. The scanner
has 576 detectors forming a ring with a 413mm radius. The sinogram data has 288 angles of view and 288
lines of response in each view. The background phantom image was obtained from a reconstructed patient scan
(Figure 2a). Two lesions, one 8mm diameter and one 16mm diameter, were simulated in the liver region as shown
in Figure 2a. ROIs were selected for both lesions. The attenuation factors that were used in the simulation were
obtained from the same patient data (Figure 2b).
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Figure 2. The background phantom image (a) and the corresponding attenuation factors (b).

The data were generated by forward projecting the phantom image with attenuation. Poisson noises were
added to the sinogram data after scaling the expected total number of events to 200k. The noisy data sets were
reconstructed using a preconditioned conjugated gradient method.20 The activities in the two selected ROIs
were measured for each reconstructed image, from which the EMSE was calculated.

Figure 3 shows the comparison of the EMSE from 300 independent Monte Carlo reconstructions and the
theoretical approximation without ROI activity variation. Figure 4 shows the comparison of the EMSE from
200 independent Monte Carlo reconstructions and the theoretical approximation for ROIs with variable contrast.
The standard deviations of the Monte Carlo results were estimated using a bootstrap method. The theoretical
approximation was compensated for the non-negativity constraint using the method developed by Qi and Leahy10

with a low-resolution noisy reconstruction (β = 100). Overall, the theoretical results provide good predictions
on the minimum EMSE and the optimum smoothing parameter for both ROIs.
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Figure 3. Comparison of the Monte Carlo results (‘+’) with the theoretical approximations (solid line). (a) An 8mm
diameter ROI; (b) a 16mm diameter ROI. The mean activity in both ROIs is about 2.6, and there is no variation in ROI
activity. The error bars represent plus and minus one standard deviation.
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Figure 4. Comparison of the Monte Carlo results (‘+’) with the theoretical approximations (solid line). (a) An 8mm
diameter ROI; (b) a 16mm diameter ROI. The activities in both ROIs are uniformly distributed between 1 to 4.

4. CONCLUSION AND DISCUSSION

We have presented a theoretical analysis of ROI quantitation for the Bayesian reconstruction. Simplified expres-
sions for the bias, variance and ensemble mean squared error for ROI quantitation have been derived. These
expressions allow fast evaluation of image quality and can be used to select the optimum smoothing parameter
to achieve the minimum EMSE estimate of the ROI activity.

While we have been emphasized on minimizing the EMSE, the results can also be applied to other figures
of merit, such as the generalized EMSE (weighted sum of bias square and variance). For experiments that are
more tolerant to bias (or variance), one can assign less weight to the bias square (or variance) to achieve a better
result. The smoothing parameter that minimizes the generalized EMSE can be found using a similar approach.

We have shown that the optimum smoothing parameter depends on the size and activity distribution of the
ROI. As a result the ROI has to be defined before selecting the optimum smoothing parameter. This can be done



by either drawing the ROI on an initial reconstruction or drawing the ROI on a co-registered anatomical image.
With the recent development of combined PET/CT and SPECT/CT scanners, such high-resolution anatomical
images are readily available. In emission tomography the tracer uptake can often be assumed to be homogeneous
inside a small ROI. This allows the use of the variable contrast model. We have found that with this model we
can apply corrections to the ROI estimate to further reduce the EMSE. We plan to study this issue in future
work.
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